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Abstract

Each column of amino acids in a multiple alignment of protein sequences can be

represented as a vector of 20 amino acid counts. For alignment and searching

applications, the count vector is an imperfect representation of a position, because the

observed sequences are an incomplete sample of the full set of related sequences.

One general solution to this problem is to model unobserved sequences by adding

artificial "pseudo-counts" to the observed counts. We introduce a simple method for

computing pseudo-counts that combines the diversity observed in each alignment

position with amino acid substitution probabilities. In extensive empirical tests, this

position-based method out-performed other pseudo-count methods and was a

substantial improvement over the traditional average score method used for

constructing profiles.
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Introduction

Sequence databanks now contain representatives from a large percentage of all

protein families (Green, 1994), so that most newly discovered sequences have

homologs that are detectable in database searches (Koonin et al., 1994). Such

successes have fueled large-scale sequencing projects, including those involving

single-pass sequencing of cDNAs (Adams et al., 1991) and those of model organisms

with high gene densities (Oliver et al., 1992). As a result of these activities, alignment

methods based on multiple related sequences have become increasingly important.

One such method is the multiple alignment equivalent of a standard database search,

in which a set of related sequences is used to query a sequence database (Dodd and

Egan, 1987; Gribskov et al., 1987; Barton and Sternberg, 1990; Henikoff et al., 1990;

Krogh et al., 1994; Tatusov et al., 1994), or else a sequence is used to query a

database of multiple alignments (Henikoff and Henikoff, 1991; Sonnhammer and Kahn,

1994; Attwood and Beck, 1994). The most effective strategies convert each alignment

into a position-specific scoring matrix (PSSM), weight matrix or profile (Gribskov et al.,

1987; Henikoff et al., 1990; Tatusov et al., 1994) in which each position in the

alignment is represented in such a way that all of the available information is efficiently

used. In a PSSM, an aligned position is represented as a vector of 20 scores derived

from counts, one for each amino acid in the alignment column. Because the alignment

is a sample drawn from a much larger distribution and most counts are zero, the count

vector might not be a complete representation of the position, and several solutions to

this problem have been described. The most popular solution is the one embodied in
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the original profile method of Gribskov et al. (1987), which generalizes pairwise

alignment scores by using counts to weight scores from an amino acid substitution

matrix.

A different approach adds "pseudo-counts" to the sample counts in an attempt

to model the underlying count vector for a position (Dodd and Egan, 1987; Brown et

al., 1993; Lawrence et al., 1993; Claverie, 1994; Tatusov et al., 1994). Evidence that

pseudo-counts can be used effectively in PSSMs was provided by Tatusov et al.

(1994) who compared the average score method and various methods for modelling

pseudo-counts with a maximum pairwise segment score for several blocks of multiply

aligned protein sequences. In their tests, all methods out-performed pairwise segment

scoring, and a Dirichlet mixture method provided the best discrimination between true

positive and true negative sequences. Their "data-dependent" method (we refer to it

here as a "substitution probability" method), which models pseudo-counts on

probabilities underlying an amino acid substitution matrix, performed less well than the

Dirichlet mixture method.

Here we introduce a substitution probability method in which the total number of

pseudo-counts is position-specific, a feature that is inherent to the Dirichlet mixture

method. These position-based pseudo-counts are simple to compute and easy to

understand. In extensive empirical tests involving PSSMs from 1673 different

alignment blocks, PSSMs incorporating position-based pseudo-counts were the best

performers among available pseudo-count methods and strongly out-performed those

constructed using the traditional average score method.
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Theory

Constructing PSSMs from blocks

Blocks are aligned ungapped arrays of amino acid sequence segments that

represent the most highly conserved regions of proteins. A PSSM calculated from a

block is as wide as the block it derives from and has 20 rows, one for each amino

acid. A PSSM is used to score alignments of the block with a protein or translated

DNA sequence. The PSSM is slid along the sequence and at each alignment the

score for every amino acid in the sequence is looked up in the column of the PSSM

with which it is aligned. Then the scores for all the columns are added to arrive at the

alignment score. The basic task when computing a PSSM is to estimate the

probabilities of each amino acid appearing at each position of the block. The scores in

each column of a PSSM can be derived in a number of ways, but are naturally based

on the frequency distribution of the amino acids observed in that position of the block,

so that an amino acid that occurs more frequently receives a higher score. The solid

theoretical basis of log-odds scoring for alignments (Stormo, 1990; Altschul, 1991)

motivates constructing PSSMs of log-odds scores. Adding log-odds scores is

equivalent to multiplying the corresponding probability ratios.

In this work, sequences in a block are weighted to compensate for redundancy.

The sequence-weighted amino acid frequencies at a position are called the "counts".

Below, we consider different methods for representing counts in columns of a PSSM.
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The odds ratio method

Counts can be converted to odds ratios of expected to observed probabilities.

Let pca be the unknown probability that amino acid a appears in column c of the block,

and let pa be the expected frequency of amino acid a in a random sequence, which

can be estimated from the overall occurrence in a large database of protein

sequences. Let nca be the count of the number of times amino acid a appears in

column c of the block, and let Nc be the total number of counts in column c. Then

nca/Nc is an estimate of pca and the odds ratio of amino acid a appearing in column c

can be estimated as:

The odds ratio is simple, and it maximizes selectivity for observed residues, but

it has serious drawbacks. Because odds ratios make no allowances for conservative

replacements, the PSSM may be insensitive to distantly related members of the

family. In addition, block columns consist mostly of zero counts, which convert to odds

ratios of zero. A zero count might indicate that the amino acid cannot occur in the

position represented by the column, or that not enough related sequences are

included in the block to observe the amino acid. In either case, the logarithm of zero is

negative infinity, preventing it from being used to make a log-odds PSSM. If these

odds ratios are used as PSSM scores without taking logs (Henikoff et al., 1990), then

adding them to get an alignment score is not mathematically defensible.
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Averaging methods

The most popular PSSM derivation is incorporated into the profile method

(Gribskov et al., 1987). An average is taken of all pairwise scores obtained from a

substitution matrix for an aligned residue and each of the residues seen in the block

column. An unobserved amino acid receives a score based on its presumed

association with the observed residues. This average score method both allows for

substitutions and deals with zero counts. The PSSM score wca for amino acid a in

column c using the average score method is:

where sia is a score taken from a 20x20 amino acid substitution matrix. The basic odds

ratio PSSM score in equation (1) can be interpreted as an average score which uses

a diagonal substitution matrix where saa = 1/pa and sia = 0 otherwise.

Another formulation for averaging can be used to obtain PSSM entries. Altschul

(1991) has demonstrated that scores obtained from any substitution matrix have a log-

odds interpretation with an implicit set of amino acid pair substitution probabilities, qia:

where λ is a scaling factor. Substituting (3) into (2), we see that the average score is a

weighted average of log-odds ratios. We might alternatively consider weighting each

odds ratio before taking the log, thus explicitly retaining a log-odds interpretation of a
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PSSM entry:

Equation (4) is especially attractive because of its intuitive interpretation in

terms of amino acid pair counts, such as those used to construct the BLOSUM series

of substitution matrices (Henikoff and Henikoff, 1992). For example, if the counts for a

column aligned with a serine consist of 2 alanines (A) and 1 serine (S), and in

presumably correct pairwise alignments there are as many AS pairs and 4 times as

many SS pairs as expected for chance alignments (respectively, qAS/pApS = 1 and

qSS/pSpS = 4), then the weighted average of odds ratios is 2/3(1) + 1/3(4) = 2 for this

position. Because each position is considered to be independent, this value can be

multiplied by the values for each of the positions in the alignment, or equivalently, their

logarithms can be added.

A potential drawback of averaging methods is that they do not take into account

the number of sequences in the block. They should make sensitive PSSMs when

there are few sequences and the actual distributions are uncertain based on the

observed data. However, when a sequence sample begins to approximate the actual

sequence distribution, averaging substitution values should reduce PSSM specificity.

Pseudo-count methods

An alternative way to construct a log-odds PSSM is to add hypothetical
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sequences to the sample. For each column, this involves adding "pseudo-counts" to

the counts based on some belief about the actual, incompletely observed, distribution

of amino acids in that column. Let bca be the number of pseudo-counts for amino acid

a in column c and Bc be the total number of pseudo-counts in the column. Both nca/Nc

and bca/Bc are estimates of pca, and a weighted average estimate is:

The relative sizes of Nc and Bc reflect how strongly each estimate contributes. If Nc is

large with respect to Bc, then the observed counts dominate, whereas the pseudo-

counts dominate when the opposite is true. Pseudo-counts should be constructed to

ensure that equation (5) will converge to nca/Nc with addition of more and more family

members, as pointed out by Claverie (1994).

When pseudo-counts are used, pca is never zero, so the PSSM score for amino

acid a in column c is computed as the logarithm of the odds ratio of pca to expected

probabilities based on the background frequency pa:

Knowledge about amino acid distributions external to an observed block can be

used as a priori information to generate pseudo-counts, and several methods have

been proposed. In the "background" method (Lawrence et al., 1993), the pseudo-count

(bca) is proportional to the overall frequency of the amino acid in a protein sequence
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database, and the total number of pseudo-counts in a column (Bc) is selected in some

way:

This method does not take into account possible constraints imposed by amino

acids observed in a column. For example, if a tryptophan is observed, then the

pseudo-count for a phenylalanine, which often substitutes for tryptophan, should be

higher than its background frequency would imply, and that for a proline, which rarely

substitutes for tryptophan, should be less.

Pseudo-counts based on substitution probabilities

Pseudo-counts can be improved by basing them on the frequencies with which

different amino acids substitute for one another (Tatusov et al., 1994). Let qia be the

probability that amino acid a is substituted by amino acid i as estimated from

sequence alignments (Dayhoff, 1978; Henikoff and Henikoff, 1992); this is the same

quantity used in equation (3). Then pseudo-counts can be generated by adding the

substitution probabilities:

Here amino acid substitutions are considered, but still crudely since no account is

taken of the amino acids actually observed in the column. This problem is remedied
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by conditioning the probabilities on the counts observed in column c (Tatusov et al.,

1994):

Claverie (1994) used a method similar in form to equation (9), but the term qia/Qi was

replaced by scores sia from a substitution matrix. In either case, the total number of

pseudo-counts (Bc) must still be chosen.

Selecting the number of pseudo-counts

Several authors have chosen Bc to be some function of the number of

sequences N in a PSSM, such as Bc = √N (Lawrence et al., 1993; Tatusov et al.,

1994; Claverie, 1994). However, this choice is not ideal. Consider PSSM properties at

extreme values for the number of counts in a column, Nc. When there is only one

sequence, the PSSM should resemble a substitution matrix. In this case, Nc = 1, ncA =

1 (column c contains the single amino acid A) and nca = 0 for amino acids other than

A. Inserting these values in (9) and then substituting bca in (5), equation (6) becomes:
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Since the substitution matrix score sAa is log [qAa / (QA * pa)], the larger Bc is, the

closer Bc/(1+Bc) is to 1 and the closer wca is to sAa. This argues for large values of Bc

when Nc is small. However, if Bc= √N, then the number of pseudo-counts can never

exceed the number of counts, suggesting that Bc= √N is not a good choice for small

numbers of sequences. At the other extreme, when there are many sequences, the

PSSM should reflect the observed frequencies. From equation (5), this will be the

case whenever Bc grows slower than Nc.

The simplest choice for the total number of pseudo-counts in a column is to let

Bc be a constant for all PSSMs. The constant must be large enough to allow pseudo-

counts to dominate counts for small numbers of sequences and should be determined

empirically. If we allow Bc to get extremely large relative to Nc in equation (5), it

reduces to a purely pseudo-count estimate of pca. Then, if pseudo-counts based on

substitution probabilities are used [equation (9)]:

Here the PSSM score is the logarithm of a weighted average of odds ratios. This is

identical to equation (4) using marginal expected probabilities, so that equation (4) can

be interpreted as a purely pseudo-count method based on substitution probabilities.
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Position-based pseudo-counts

A drawback of substitution probability methods discussed so far is that they use

the same number of pseudo-counts (Bc) for all columns in a PSSM. We conjectured

that computing Bc independently for each column might improve performance.

Although it is possible to compute an optimal theoretical value for Bc in equation (5)

based on the observed counts, the result has the unacceptable property for PSSMs of

being zero for conserved columns regardless of the number of sequences (Bishop et

al., 1975). Instead, we looked for properties on which Bc could be based so that it

would behave well for both small and large numbers of counts using position-specific

information.

A reasonable basis for computing position-specific values for Bc is to take into

account residue diversity. A conserved column requires fewer total pseudo-counts

than a diverse column. We can use the number of different amino acids in the column,

Rc, as a simple indicator of diversity. This is the same measure of position diversity

used successfully to compute position-based sequence weights (Henikoff and

Henikoff, 1994a). Accordingly, we set the total number of pseudo-counts in column c

equal to:

where m is an empirically determined positive number. Since there is always at least

one residue in a block column and the number of different residues in a column can

never exceed the smaller of 20 or the number of sequences in the column, it follows
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that:

From equation (5), pseudo-counts dominate counts when Nc < Bc, which always

happens when Nc ≤ m * 20 for position-based pseudo-counts. When Nc > m * 20, the

counts always dominate regardless of the value of Rc, so that equation (5) tends to

nca/Nc as the number of sequences gets large, as required. For a conserved column

(Rc = 1), counts dominate when Nc > m.

Pseudo-counts based on Dirichlet mixtures

Another method that uses observed amino acids at a position for generating

pseudo-counts is similar to the substitution probability method in general form, but the

probabilities are derived in a different way. Rather than using pairwise amino acid

substitution data, mixtures of Dirichlet densities are computed from columns of multiple

sequence alignments (Brown et al., 1993; K. Sjölander, personal communication). A

feature of this method is that probability estimates take into account the number of

sequences observed in a position-specific manner, without requiring that the total

number of pseudo-counts in a column be set arbitrarily. First a number, D, of Dirichlet

probability densities is selected. Each density has 20 parameters which sum to ∝i, i =

1,...,D. In addition there are (D-1) parameters that specify the weight of each Dirichlet

density in the mixture. All of these parameters must be estimated from multiple

alignment data. Once the parameters are estimated, the pseudo-counts are computed
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as:

Although the sum is over the mixture components rather than amino acids, the general

form is parallel to that for substitution probability methods [equation (9)] in the use of

conditional probabilities. The total number of pseudo-counts in a column is:

The Dirichlet mixture method is attractive because of the mathematically

elegant way in which the probability that the observed column is an example of each

of the D distributions is estimated. However, the number of distributions must be

selected in some way, and there is no general agreement about whether any set of

column probability distributions is natural. These distributions might assume

regularities in the underlying alignment data that are unrealistic. Substitution probability

methods for generating pseudo-counts use pairwise substitution data models (e. g.,

PAM and Blosum) that are more widely accepted and more easily comprehended than

the Dirichlet mixture model.
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Methods

PSSMs were made from 1673 blocks in Blocks 5.0 (Henikoff and Henikoff,

1991), based on Prosite v. 9 (Bairoch, 1992) and Swiss-Prot v. 22 (Bairoch and

Boeckmann, 1992), for the 465 Prosite groups that had more sequences in Prosite v.

12, coordinated with Swiss-Prot v. 29, than in Prosite v. 9. The PSSMs were then

searched against Swiss-Prot v. 29 using the BLIMPS searching program (Henikoff et

al., 1995) and the full-length sequences from Prosite v. 12 were used as the list of

true positive sequences for each group (fragment sequences were ignored).

Therefore, only a portion of the true positive sequences were used to make the test

blocks. The 465 groups averaged 59% (median 44%) more sequences in Prosite v. 12

than in Prosite v. 9. The raw counts were always sequence-weighted using position-

based sequence weights (Henikoff and Henikoff, 1994a). For pseudo-count methods,

the PSSM score for amino acid a in column c was computed as in equation (6). To

ensure a range of scores when searching with BLIMPS, the scores were scaled to lie

between 0 and 99 for each PSSM. For methods based on substitution probabilities,

we utilized those that underlie Blosum substitution matrices (Henikoff and Henikoff,

1992).

The evaluation approach was similar to that of Tatusov et al. (1994), except

that many more protein groups were included. Odds ratio, averaging and a variety of

pseudo-count methods were tested. For each method, all 1673 PSSMs were

computed and searched against Swiss-Prot v. 29. BLIMPS output consists of a list of

the database sequences ranked by PSSM score. Each list was compared against the
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list from the corresponding odds ratio PSSM [equation (1)]. The number of searches

for which the tested method performed better or worse than the odds ratio method

was tabulated. Three measures were utilized. The percentile measure (Pearson, 1991;

Henikoff and Henikoff, 1994a) simply counts the number of known true positive

sequences that score above 99.5% of the other sequences in the database, which are

assumed to be true negatives. Swiss-Prot v. 29 has 38,303 sequences and the

average number of true positives for a block was 25, so on average the percentile

measure counts the number of true positives above the first 191 true negatives. The

equivalence number (Pearson, 1995) is the point at which the true negative rank

exceeds the true positive rank, determined by counting the true positives from the

bottom of the results list and the true negatives from the top. This point is

approximately where the number of false positives equals the number of false

negatives, and is zero when all the true positive sequences are ranked above any true

negative sequences. The receiver operating characteristic (ROC) area (Metz, 1978)

also counts the true negatives from the top of the results list, but computes the area

under a curve where the true negative number is plotted on the x-axis and the number

of true positives ranking above that true negative is plotted on the y-axis. The axes

are normalized so the maximum area under the curve is 1.0.

The different evaluation measures may give different results for a particular

block. The percentile measure is especially sensitive to detection of true positives, but

not to a few high-scoring false positives. This feature is useful in the present tests,

because there are true positive sequences that are not cataloged in Prosite (Bairoch,
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1992), and these can be erroneously scored as true negatives. The equivalence

number more precisely quantifies the separation of true positive and true negative

scores than the percentile measure. Because it finds the single point where the true

positive and negative score distributions cross, it is sensitive to incorrectly cataloged

sequences. The ROC area shares features of the equivalence number, but it attempts

to characterize the entire true positive and negative distributions, not just the single

point where they cross. However, interpretation is problematic if the two curves cross

when superimposed. Because the area under the ROC curve is non-integral, a

tolerance value must be selected to decide when one area is "greater" than another.

Since we saved 400 scores for each search, we chose a tolerance of 0.0025. We

allowed for the different strengths and weaknesses of the three evaluation measures

by requiring that all three measures show improved overall performance before one

method was judged better than another.

All programs were written in standard C on Sun workstations using the SunOS

4.1.3 operating system. BLIMPS is available by anonymous ftp to ncbi.nlm.nih.gov, cd

repository/blocks. Other programs and test results are available by request to the

authors.

Results

PSSM evaluations based on sequence database searching

PSSMs were constructed using various methods; these were tested by

searching them against a protein sequence database and scoring the ability of the
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PSSMs to separate known true positive and true negative sequences. We wanted to

approximate the realistic situation in which a new sequence is compared to a

database for possible classification into a known family of proteins. Since Prosite and

Swiss-Prot are maintained in tandem, we accomplished this by searching blocks made

from an older version of Swiss-Prot against a newer version of Swiss-Prot that

contains more sequences, and using the corresponding newer version of Prosite to

provide the lists of new true positive sequences. Sequences present in the block were

included in evaluation of results, although qualitatively similar results were obtained

when these were excluded (data not shown).

Our results are consistent with those of Tatusov et al. (1994) for the methods

they tested (see their Table 1). There, PSSMs using pseudo-counts from a 9-

component Dirichlet mixture performed best. PSSMs using pseudo-counts from

substitution probabilities for BLOSUM 62 and the total number of pseudo-counts in

each column equal to the square root of the number of sequences (Bc=√N), performed

about as well as the average score method with BLOSUM 62. Somewhat poorer

performance was obtained with PSSMs using background frequencies, again with

Bc=√N. In our more comprehensive tests using the same methods, very similar results

were obtained using 3 different evaluation criteria (Figure 1). This suggests that the

many procedural differences between our study and theirs did not seriously influence

overall PSSM performance.

In this work, we introduce two extensions of the substitution probability method

for computing pseudo-counts [equation (9)]. One keeps the total number of pseudo-
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counts in each column constant but large, and the other takes into account the

diversity of an aligned position by making the total number of pseudo-counts

proportional to the number of different residues represented in the column [equation

(12)]. We tested a range of values for the constant method, finding that performance

leveled off around Bc=50 (data not shown).

In the position-based method, diverse columns receive more pseudo-counts

than conserved columns, reflecting more uncertainty about their composition. To allow

the number of pseudo-counts to dominate counts when there are few sequences or

when the column is diverse, we multiply the number of different residues in the column

Rc by a positive integer, m, so that Bc = m * Rc in equation (9). To choose the value of

m, we tested a range of values until performance leveled off, as expected from

equation (11). Figure 2 shows the performance of these position-based pseudo-

counts. For all three different evaluation criteria, performance improved with increasing

m, leveling off when m = 5 to 6. This performance exceeds that of all other methods

tested, including the Dirichlet mixture method (Figure 1). Position-based pseudo-

counts from both BLOSUM 62 (Figure 2) and BLOSUM 100 (data not shown)

performed best when m = 5.

Allowing m to become infinitely large corresponds to a PSSM made purely with

substitution probability pseudo-counts [equation (11)], which resulted in reduced

performance (Figure 2). Nevertheless, Figure 1 reveals that this method, which is

essentially the same as the average odds method [equation (4)], out-performed the

average score method [equation (2)] implemented in profiles (Gribskov et al., 1987),
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which it closely resembles.

We also varied the source of substitution probabilities over a wide range, from

those for BLOSUM 45, with relative entropy H = 0.38 to BLOSUM 100, with H = 1.5.

Only minor differences were seen (Figure 2). Similarly, using a Dirichlet mixture

composed of 30 components rather than 9 had only minor effects on overall

performance (Figure 1). Therefore, performance differences appear to depend more

on the basic method used for generating pseudo-counts than on the parameters used.

PSSM evaluations based on Blocks Database searching

We also tested the performance of PSSMs when they comprise the scores in a

database and protein sequences are used as queries. For this, we repeated tests

originally carried out using odds-ratio PSSMs (Henikoff and Henikoff, 1994b) with

PSSMs constructed using pseudo-counts computed from 9-component Dirichlet

mixtures and from the best position-based method. Databases of PSSMs were made

from version 6.0 of the Blocks Database using each method, and 7,082 sequences

from Swiss-Prot v. 24 not represented in the Blocks Database were searched against

these databases. All of the high-scoring hits were evaluated. Each sequence was also

shuffled by randomly permuting individual residues, and each shuffled sequence was

used to query these databases. As before, we searched 7,082 non-redundant full-

length sequences not present in Prosite against a Blocks Database. For both pseudo-

count methods, improved performance was obtained, as reflected in the increases in

detection of true positives and decreases in detection of false positives (Table I). For
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Dirichlet pseudo-counts, the net improvement (true - false positives) was 30 hits and

for position-based pseudo-counts, the net increase was 53 hits.

Discussion

Improvements in PSSM performance were seen when three features were

incorporated: consideration of substitutions, sensitivity to number of sequences and

position specificity (summarized in Table II). The best performing method (position-

based pseudo-counts) included all three features, whereas the worst performer (odds

ratio) included none. In general, the more of these features, the better the

performance. For example, the average score method, which includes one feature,

was outperformed by all methods that include two features.

Pseudo-count methods that include at least two features performed especially

well. An exception is the substitution probability method in which the total number of

pseudo-counts is N, which is always less than the number of counts. The best

pseudo-count methods are those that allow pseudo-counts to dominate counts when

there are few sequences, or when a variety of amino acids occurs at a position, even

one represented by as many as dozens of sequences. Excellent performance was

obtained just by using a large constant number of these pseudo-counts, allowing them

to sometimes dominate observed counts. PSSM performance using a constant value

of 50 pseudo-counts per position based on substitution probabilities was as good as

that using Dirichlet mixtures. Taking into account position-specific information further

improved performance. Best overall performance was found for the position-based
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method when the number of pseudo-counts in a column was set equal to about five

times the number of different amino acids representing that position. For an invariant

position, counts dominate pseudo-counts only when there are more than five

sequences, and counts always dominate when there are more than 100 sequences,

regardless of the number of different amino acids. This balance between counts and

pseudo-counts appears to be the best compromise given our substitution probability

model.

Position-based pseudo-counts provide substantially improved performance over

the average score method incorporated into profiles (Gribskov et al., 1987), which has

been the standard for PSSM construction for the past several years. Based on the

equivalence number measure, the average score method was a 50% improvement

over the odds ratio control, whereas the position-based pseudo-count method was an

eight-fold improvement (Figure 1). Furthermore, position-based pseudo-counts are

rather insensitive to the particular choice of the substitution matrix on which the

pseudo-counts are modelled (Figure 2), in contrast to the average score method

(Luthy et al., 1994).

Our results also demonstrate the superiority of methods based explicitly on log

odds scores, as theory predicts (Stormo, 1990; Altschul, 1991). Non-logarithmic

methods in which the odds ratios are summed over all positions performed poorly.

This was the case whether or not pseudo-counts were added: the best method for

generating pseudo-counts, position-based with m=5, performed similarly to the odds

ratio control without logarithms. Moreover, the average score method was out-
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performed by a simple reformulation that retains an explicit log odds interpretation.

Earlier improvements in the profile method, such as the provision of sequence weights

and better amino acid substitution matrices (Thompson et al., 1994; Luthy et al.,

1994), retained the original formulation. These improvements apply as well to our

reformulation.

We expect that weight matrices incorporating position-based pseudo-counts will

also prove useful for representing gapped alignments, such as in profiles, and that

their use can be extended to any application in which a multiple alignment column is

converted to a count vector (Vingron and Argos, 1989; Smith et al., 1990; Krogh et al.,

1994). It is interesting that better performance was obtained for position-based

pseudo-counts than for available Dirichlet mixtures (Brown et al., 1993), which

represent a more complex mathematical model for determining pseudo-counts. It is

possible that the position-based method captures the essence of the Dirichlet model,

allowing very robust sets of substitution probabilities to be employed effectively.
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Figure 1: Tests of different methods for PSSM column representation.

A set of 1673 blocks from Blocks v. 5.0 (based on Prosite v. 8 keyed to Swiss-Prot v.

22) was converted to PSSMs using position-based sequence weights and the

indicated column representation method. BLOSUM 62 or its underlying substitution

probabilities [derived from Blocks v. 5.0 (Henikoff and Henikoff, 1991)] were used

wherever these values were required. Dirichlet mixtures (Brown et al., 1993) were

constructed by K. Sjölander (personal communication) using columns from Blocks v.

5.0. Each PSSM was then used to search Swiss-Prot v. 29 which corresponds to

Prosite v. 12, from which lists of true positive sequences were obtained. The methods

tested were: Pos. (no log), position-based [equations (9) and (12)] with m = 5 but

scores are added without taking logarithms; Background [equation (7)] where Bc = √Nc;

Subst. √N, pseudo-counts based on substitution probabilities where Bc = √Nc [equation

(9)]; Avg. score, average score method [equation (2)]; Avg. odds, log of average odds

ratio [equation (11)]; Dirichlet 30 and Dirichlet 9, pseudo-counts based on Dirichlet

mixtures of respectively 30 and 9 components [equation (14)]; Constant 50, Bc = 50;

Position m = 5, position-based where m = 5 [equations (9) and (12)]. All test PSSMs

were compared against a PSSM made using the odds ratio method [equation (1)]. The

solid bars represent the number of test PSSMs for which performance was better than

performance of the corresponding odds ratio PSSM. The hatched bars represent the

number of odds ratio PSSMs for which performance was better than for the

corresponding test PSSM. Three performance measures were used: the number of

true positives scoring above the 99.5 percentile level of true negatives, the
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equivalence number, and the ROC area.

Figure 2: Effect of changing parameters on performance of PSSMs incorporating

position-based pseudo-counts. For substitution probabilities underlying BLOSUM 62

(B62) the value of m was varied, and for m = 5, the Blosum parameter was varied

from 45 to 100 (Henikoff and Henikoff, 1992). Position-based BLOSUM 62 and m = ∞

is the same as the average odds method for BLOSUM 62 [equation (11)]. See Figure

1 legend for details.
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Table I. Performance differences in searches of the Blocks Database

Found by TPs1 found FPs found Total

Position-based, not odds ratio2 51 4

Odds ratio, not position-based 4 10

Difference +47 + 6 +53

Dirichlet 9, not odds-ratio 43 16

Odds ratio, not Dirichlet 9 0 3

Difference +43 -13 +30

1High scoring hits were examined manually for occurrences of uncatalogued true

positives and new discoveries as previously described (Henikoff and Henikoff, 1994b).

If there was uncertainty in classification, the entry was excluded from the analysis.

2From Blocks v. 6.0, in which PSSMs were calculated using odds ratios for counts

weighted by the 80% clustering method (Henikoff and Henikoff, 1994a).
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Table II. Features of PSSM column representation methods

Considers Sensitive to Position Relative

substitutions No. of sequences specific performance1

Odds ratio No No No -

Average score Yes No No +

Average odds Yes No No ++

Pseudo-counts2:

Background N No Yes No +

Substitution N Yes Yes No ++

Substitution constant Yes Yes No +++

Dirichlet 9 Yes Yes Yes +++

Position-based Yes Yes Yes ++++

1Data of Figure 1 were converted to ratios of wins to losses. A ++ method obtained higher

ratios for all three evaluation criteria than a + method, and so on.

2" N" is the total number of pseudo-counts, Bc = N, "constant" is Bc = 50, and Dirichlet 9

uses the 9 component mixture.
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